businesspress24.com - Energizing heat for smart appliances
 

Energizing heat for smart appliances

ID: 1544275

(firmenpresse) - Tsukuba, Japan, Nov 21, 2018 - (ACN Newswire) - Scientists are getting closer to designing thermoelectric materials that efficiently harvest heat from the surrounding environment and convert it into electricity to power various devices and appliances, according to a review of the latest research in the journal Science and Technology of Advanced Materials. Devices made with these materials could avoid the need to recharge, change and dispose of batteries.

For thermoelectric materials to be efficient energy producers, they need to be able to hold heat and conduct electricity well. Thermoelectric materials that can work near room temperature and are flexible would be especially advantageous, particularly for use in wearable devices.

Three types of conducting materials are being investigated for use in thermoelectric devices: inorganic, organic and hybrid materials.

Inorganic thermoelectric materials efficiently convert heat into electricity, but are not very flexible. Researchers are working to overcome this hurdle. For example, a flexible thermoelectric device was fabricated using chromel (90% nickel and 10% chromium) and constantan (55% copper and 45% nickel) layers covered by a flexible sheet made of polyimide and copper. Micro-thermoelectric generators based on inorganic materials have potential applications in environmental and building monitoring, animal tracking, security and surveillance, and medical treatment. They have already been introduced into commercial devices, such as a body-heat-powered watch manufactured by Seiko.

Most organic thermoelectric devices involve polymers. Semiconducting polymers conduct electricity and hold heat better than conventional inorganic semiconductors. They are also lighter and less expensive. Unlike rigid inorganic materials, they are flexible and moldable and can be produced in any shape using 3D printers. However, they are less efficient at converting heat into electricity. Researchers are trying to improve the thermoelectric efficiency of polymers by tuning the composition, length and arrangement of their molecules, aiming to increase the electrical conductivity and crystallinity of the final material.





Research that aims to combine the advantages of organic and inorganic materials by blending them together is focused on finding optimal compositions and improving the mixing process. For example, embedding organic molecules into inorganic titanium disulfide crystals makes them flexible and reduces their thermal conductivity. This improves the overall thermoelectric performance.

The authors conclude that thermoelectric devices can potentially replace traditional batteries in many applications, but a lot of work on improving thermoelectric materials is required for achieving success in this direction.

For more information about the research, contact
Professor Xavier Crispin
Laboratory of Organic Electronics
Linkoping University
xavier.crispin(at)liu.se

About Science and Technology of Advanced Materials Journal
Open access journal, STAM publishes outstanding research articles across all Aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.

For more information about STAM, please contact:
Mikiko Tanifuji
STAM Publishing Director
Tanifuji.Mikiko(at)nims.go.jp

Paper link:
https://doi.org/10.1080/14686996.2018.1530938

Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.

Unternehmensinformation / Kurzprofil:
drucken  als PDF  an Freund senden  Paradise Entertainment Shines through the MGS Show 2018
Suprema ID to intro world's slimmest FAP30 fingerprint scanner at Trustech 2018
Bereitgestellt von Benutzer: acnnewswire
Datum: 20.11.2018 - 19:46 Uhr
Sprache: Deutsch
News-ID 1544275
Anzahl Zeichen: 3705

contact information:
Town:

Tsukuba, Japan



Kategorie:

Electronics & Semiconductors


Typ of Press Release: Kooperation
type of sending: Veröffentlichung

Diese Pressemitteilung wurde bisher 481 mal aufgerufen.


Die Pressemitteilung mit dem Titel:
"Energizing heat for smart appliances"
steht unter der journalistisch-redaktionellen Verantwortung von

Science and Technology of Advanced Materials (Nachricht senden)

Beachten Sie bitte die weiteren Informationen zum Haftungsauschluß (gemäß TMG - TeleMedianGesetz) und dem Datenschutz (gemäß der DSGVO).

Progress towards potassium-ion batteries ...

TSUKUBA, Japan, July 7, 2025 - (ACN Newswire) - Potassium-ion batteries could have a higher energy density than sodium-ion batteries. This is important for large-scale energy storage such as for renewable energy. In a review published in Science a ...

New method to blend functions for soft electronics ...

TSUKUBA, Japan, June 18, 2025 - (ACN Newswire) - Soft electronics are an exciting and innovative class of technology that brings together bendable, stretchable semiconducting materials for applications in areas ranging from fashion to healthcare. Re ...

Alle Meldungen von Science and Technology of Advanced Materials



 

Who is online

All members: 10 562
Register today: 1
Register yesterday: 2
Members online: 0
Guests online: 63


Don't have an account yet? You can create one. As registered user you have some advantages like theme manager, comments configuration and post comments with your name.