businesspress24.com - Progress towards potassium-ion batteries
 

Progress towards potassium-ion batteries

ID: 1576301

Alternative battery technologies are vital for the green transition.

(firmenpresse) - TSUKUBA, Japan, July 7, 2025 - (ACN Newswire) - Potassium-ion batteries could have a higher energy density than sodium-ion batteries. This is important for large-scale energy storage such as for renewable energy.

In a review published in Science and Technology of Advanced Materials, researchers have surveyed the battery technologies that will be vital for a sustainable green transition. Eunho Lim and colleagues at Korea’s Dongguk University discuss recent advances and challenges, and point towards the research needed to develop an alternative to lithium-ion batteries.

Although lithium-ion batteries have been invaluable in the electronics revolution—powering laptops, smartphones, electronic vehicles, and much more—their expanding use faces a critical challenge. Lithium is not a common resource. Increasing demand has turned it into a high-value, strategic resource, and the green transition is expected to increase demand further still.

One alternative is to develop battery technologies based around a more common material. Sodium-ion batteries are an option, and the technology is nearly ready for commercialization. But potassium-ion batteries would be even better, since they could have a higher energy density, which is especially important for large-scale energy storage, such as for renewable energy.

“Potassium-ion batteries are emerging as a viable alternative due to the abundance and cost-effectiveness of potassium, but realizing their potential requires the development of advanced anode materials tailored to the unique properties of potassium ions,” explains Lim.

Professor Lim’s review addresses the research needed to realize the potential of potassium-ion batteries. The paper systematically examines the strengths and weaknesses of different anode materials and the electrochemical mechanisms each would rely on. The paper also outlines strategies that could overcome the weaknesses of each approach, as well as the trade-offs between performance and stability. One important point that emerges is the interaction of electrochemical parameters and physical structures in determining the potassium-ion batteries’ capacity and longevity. Based on this overview, the team highlights paths for future research to advance potassium-ion battery technology.





Lim plans to build on this groundwork, aiming to design new materials that can deliver the promise of potassium-ion batteries while working around their limitations. “My research will focus on the development of cost-effective, high-performance, and safe anode materials for potassium-ion batteries,” he says. He also plans to use advanced characterization techniques to investigate some of the fundamental phenomena that happen in the battery materials. “Understanding these mechanisms will be crucial for optimizing material design and electrode architecture.”

“Ultimately,” he says, “my goal is to contribute to the commercialization of potassium-ion batteries by developing materials that can rival or exceed the performance of current lithium-ion battery anodes.”

Further information
Eunho Lim
Dongguk University, Republic of Korea
eunholim(at)dgu.ac.kr

Paper: https://doi.org/10.1080/14686996.2025.2518746

About Science and Technology of Advanced Materials (STAM)

Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials. https://www.tandfonline.com/STAM

Dr. Kazuya Saito
STAM Publishing Director
Email: SAITO.Kazuya(at)nims.go.jp

Press release distributed by Asia Research News for Science and Technology of Advanced Materials.

Unternehmensinformation / Kurzprofil:
drucken  als PDF  an Freund senden  Two new microalgae genera discovered in Indonesian waters TANAKA PRECIOUS METAL GROUP and TANAKA MIRAI Lab. Successfully Carries Out Space Protein Crystallization Experiments
Bereitgestellt von Benutzer: acnnewswire
Datum: 07.07.2025 - 02:03 Uhr
Sprache: Deutsch
News-ID 1576301
Anzahl Zeichen: 3984

contact information:
Town:

TSUKUBA, Japan



Kategorie:

Research & Development


Typ of Press Release: Company
type of sending: don't

Diese Pressemitteilung wurde bisher 234 mal aufgerufen.


Die Pressemitteilung mit dem Titel:
"Progress towards potassium-ion batteries"
steht unter der journalistisch-redaktionellen Verantwortung von

Science and Technology of Advanced Materials (Nachricht senden)

Beachten Sie bitte die weiteren Informationen zum Haftungsauschluß (gemäß TMG - TeleMedianGesetz) und dem Datenschutz (gemäß der DSGVO).

New method to blend functions for soft electronics ...

TSUKUBA, Japan, June 18, 2025 - (ACN Newswire) - Soft electronics are an exciting and innovative class of technology that brings together bendable, stretchable semiconducting materials for applications in areas ranging from fashion to healthcare. Re ...

Alle Meldungen von Science and Technology of Advanced Materials



 

Who is online

All members: 10 561
Register today: 2
Register yesterday: 2
Members online: 0
Guests online: 73


Don't have an account yet? You can create one. As registered user you have some advantages like theme manager, comments configuration and post comments with your name.